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The coupled and uncoupled Hartree Fock perturbation theories are generalised using unrestricted 
Hartree Fock theory. The variational approach to coupled theory is discussed and various corrections 
to the uncoupled theory are considered. Trial calculations are carried out to obtain atom-atom polariza- 
bilities for Allyl and the first excited triplet state of cis-Butadiene, and to obtain estimates of spin and 
charge densities for various beterocyclics. 

Die gekoppelte and die ungekoppelte Hartree-Fock Sttirungstbeorie werden mit Hilfe der unein- 
geschr~inkten Hartree-Fock-Theorie verallgemeinert. Das Variationsverfahren f'tir die gekoppelte 
Theorie wird diskutiert und verschiedene Korrekturen f'tir die ungekoppelte Theorie werden unter- 
sucht. Es werden Testrechnungen durchgetiihrt, um die Atom-Atom-Polarisierbarkeiten des Allyl- 
radikals und des ersten angeregten Tripletzustandes yon cis-Butadien, und um die Spin- und Ladungs- 
dichten verschiedener Heterozyklen abzusch~itzen. 

1. Introduction 

For  many  years there has been considerable interest in per turbat ion theoretic 
treatments of molecules (see Refs. [ 1-10]). Almost  all of  these have been restricted 
to the g round  state, or  the excited states, of the mos t  c o m m o n  type of molecule 
that  is those molecules with an even number  of electrons. For  these molecules 
the g round  state wavefunct ion is a singlet and may be approximated  by a single 
determinant  of  2m functions of space and spin coordinates  (spin orbitals) where 
2m is the number  of  electrons. The purpose of this paper is to extend these calcu- 
lations to calculations applied to molecules 'with an odd number  of electrons, 
and to triplet excited states of  molecules with an even number  of electrons, using 
unrestricted Har t ree -Fock  per turbat ion theory. That  is to say the zero order 
approximat ion  for the per turbat ion  theory is taken to be the unrestricted Hartree- 
Fock  single determinant.  This function is a determinant  of spin orbitals v ~ which 
are products  of a space function u ~ and a spin function e or 13. The single deter- 
minant  is constrained to be an eigenfunction of Sz and this is done by assuming 
that  p spin orbitals are associated with e spin and q with/3 spin so that  

1 
~-  (p - q) = M (1) 

where M is the chosen eigenvalue of Sz- Fo r  a molecule with an even number  of  
electrons, if we choose M = 1 the single determinant  is an approximat ion  to the 
wavefunct ion for the first triplet excited state so that unrestricted per turbat ion 
theory becomes an excited state per turbat ion theory. A full discussion of the 
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relevent theory for the most general single determinant has been given by Amos 
and Hall [18] and Amos [19]. 

The two particular theories discussed in this chapter are the coupled and 
uncoupled Hartree-Fock theories for perturbations by one electron operators 
(see Refs. [1-10]). The coupled theory takes into account, to all orders of the 
perturbation theory, the change in the Hartree-Fock operator due to changes 
in the spin orbitals (i.e. the change in the self consistency conditions), whereas 
these are ignored in uncoupled theory. These theories are discussed in Sections 2 
and 4 of this paper. Recently there has been interest in a variational principle 
for the first order spin orbitals in coupled theory (see Refs. [3, 6]). A discussion 
of this, with regard to the unrestricted perturbation theory presented in this 
paper, is given in Section 3. In general the single determinant is not an eigen- 

2 function of the total spin operator S .  It is possible to correct for this perturbatively 
in both the coupled and uncoupled theories. In the case of uncoupled theory it 
is also possible to correct the first and second order total energies by double 
perturbation theory as shown by Tuan et al. [lJ. Both of these corrections are 
discussed in Section 5. 

Finally in Section 6 two applications of this theory are discussed. The spin 
and charge densities of various hetromolecules are considered. The theory is also 
appropriate for a discussion of chemical reactivity which is related to the atom- 
atom polarizabilities for alternant hydrocarbons. The atom-atom polarizabilities 
for various ions and triplet excited states are calculated. 

2. Coupled Perturbation Theory 

Consider the best single determinant wavefunction, for an approximation 
to the ground state of a general molecule with n electrons, in the form 

~o = (n!) -~ det {~p~ ... ~p~176 + 1)fl(p + 1)... ~b~ + q)fl(p + q)} (2) 

where p + q = n and without loss in generality we may choose the sets of functions 
0pO}, {q~O} to be separately orthonormal and p > q. The functions {~po} and {q~O} 
are determined by minimising the functional 

(~eo l~l ~eo>/<~eo { ~o> (3) 

with respect to variations ~o ~ and 5qb ~ in ,po and qb ~ where 

= ~ h(i)+ ~ _1 (4) 
i = 1  i<j rij 

is the total hamiltonian for the molecule. The molecular orbitals {~pO} and {~b ~ 
obtained in this way satisfy equations of the form 

F,o(i)~o(i) o o I = E~,~p, ( ) ,  (5) 

Ft, o(1)qbO(1)= o o Er q~i (1) (6) 
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where E ~ and E~, are the orbital energies, 

and 

F'~ = h(1) + G'~ = h(1) + 

q 

+ 2 1 - - r 1 7 6 1 6 2 1 7 6  
j = l  

p 
E ( 1 - - ~ ~ 1 7 6  o o 

j = l  
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(7) 

F~~ = h(1) + Gr176 = h(1) + ~ [ -  V~ - ~pO] 

J=~ (8) 
q 

+ y ~ ( [ _  o o o o Cjl-  ~ j ] -  [ -  ~j I~j - ] )  
j = l  

in the notation of Amos and Musher 1-8] for the coulomb and exchange operators. 
The total single determinant wavefunction T O satisfies the eigenvalue equation 

where /-)o To = Eo To 

/-)o = i (h ( i )+  G~~ <~ I + Ga~ + C ~ 
i = 1  

and C O is chosen so that 

Eo = <~o1~1 ~o>/<~o I ~o>. 

(9) 

(10) 

(11) 

In principle Eqs. (5) and (6) have an infinite number of solutions in practice 
however the functions {~p0} and {q~o} are expanded as a linear combination of 
m (say) basis functions {~} so that the operators F "~ and F a~ are truncated. 

If we now change the one-electron operators in the hamiltonian by an amount 
W = ~ z(0 and denote the changes to the k th order in the Hartree Fock operators 

i 
F "~ and F ~~ by F ~ and F a~ we obtain the following set of perturbation equations: 

~o S o k (F,~ - r~E,,) ais = (1 - (~kO) ~ (E,iS~J - F~)a i~  , "J k - j  (12) 
s = l  s = l  j = l  

where 

and 

,tF~~ - S,~ E ~ b,~k = (1 -- 6kO) ~. ( E ~ S , ~ - F ~ I ) b , ~  - j  (13) 
s = l  s = l  j = l  

S,~ = ~ og*(1)ogs(1)dz (14) 

FII = ~ co*(1)F~J(1)co~(1) dz,  (15) 

F~/= ~ co*(1)Fa~(1)co~(1) d r ,  (16) 

~ =  ~ a~,m,, (17) 
r = l  

b i . o , .  (18) 
r = l  



182 B . L .  B u r r o w s :  

It is easy to see that if we define 
p k 

P~v= Z Z a/k. - j  a*] 
and ~=~ i=o 

q k 

Z Z h -Jh*  
i = 1  j = O  

(19) 

(2o) 

Gt k then we may express F~ and F ~  in the form 

F,~=h,~6ko + z,~6k~ + ~ P~.([rvlsu]--[rvlus])+ ~ Q~Ervlsu ] (21) 

and ~ "v 

FP,2 = hr~6kO + z,~bk~ + ~, P~[rv ]su] + ~ Q~o([rv I su] - [rv l us]) (22) 
U~) LIt) 

where 
h,, = I o~*(1)h(1)co,(1)dz, (23) 

z,s = = ~ co*(1)z(1)a~(1)dz (24) 
and 

, , 1 
[rvl us] = ~ co, (1)co~ (2) ~%(1)r (25) 

F12 

The additional conditions that the orbitals remain orthonormal are given by the 
following set of equations: 

~ -irb*Jt'k-Juts S,. s = •kO•it, (26) 
rs j = O  

~ a *j a;Z j S,s = 6kO6,,. (27) 
rs j = 0  

The first and second order changes in the total energy of the molecule are given by 

m 

E1 = ~ (P~r~ + Qs,)~ zr~ (28) 
r $  

m 

1 1 2E2 = ~ (P,, + Q~) zrs. (29) 
r 8  

For a pi-electron system the Pariser-Parr-Pople schemes enables F ~" to be con- 
siderably simplified: 

m 1 k 
F~"'~ = h~fkO + Z,~fkl + 6,~ (~  (P~ + Qkvv)?,v ) - ~ P~s?,~ (30) 

where ?,~ is the electron repulsion integral and the functions {co,} are orthonormal 
so that Sr~ = 5,~. Expressions for F ak are similar in form with P,~v and Q~, inter- 
changed. 

3. Variational Principle 

It is possible to calculate the first order coupled wavefunction making use 
of a variational principle. This is sometimes to be prefered to the more conven- 
tional perturbation method where Eqs. (12) and (13) are solved iteratively. The 
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variational procedure for the coupled functions was developed by Langhoff, 
Karplus and Hurst [3]. In order to examine this procedure as applied to un- 
restricted perturbation theory we will use a result established by Epstein and 
Johnson [6]. Consider any single determinant approximation to the perturbed 
system ~ such that 

~= ~ 2k73k (31) 
k=O 

and 730 = 7"0 the Hartree-Fock wavefunction for the unperturbed system. Let 
7"~ be the coupled single determinant approximation to the perturbed system so 
that a o  

7"~= ~ 2k~p~,. (32) 
k=O 

As 7"~ is the best single determinant for the perturbed system we have the following 
inequality: 

(7"=1~+,~Wt7" =) < _(q ' l~+,~WIq ' )_  (33) 
(7"~17,  ~ ) = ( q ' l  q ' )  " 

E (exact) < 

This may be written as 
E(exaet) =< ~ E~,2k< ~ Ek 2k. (34) 

k=O k = 0  
Now by Brillouin's theorem 

(~11~1 7'0) + (7"o [~l~3a) = 0  (35) 
so that 

U S + 2E~ =/~0 + 2/~1. (36) 

Consequently we may cancel these terms in (34) and obtain the following inequality 

(37) 
k = 2  k = 2  

for all values of 2 in the range [0, 1]. If we consider the limit as 2 ~ 0 we see that 

E~ </~2 (38) 

which is the result of Epstein and Johnson. Now if we assume all wavefunctions 
are real 

/~2 = 2Eo(7"o 1732) + (7311Ho1731) + 2(7"ol W1731) 
(39) 

1 (fl])-C~ ~)2 + (qJ ,<~j rT- j -  ~ (G~~ + Ga~ 
where " ' �9 

P q 

Eo= E E~ + E E~,+ C ~ (40) 
i = 1  i = 1  

The single determinant ~ may be written in the form of Eq. (2) that is 

~ =  (n !)-~ det {731(1)e(1)... ~ ( p +  1)fi(p + 1)... ~)q(p+q)fl(p+q)} (41) 

where 
73i = ~ 73/k2k '~2) 

k=O 

k=O 
13 Theoret. chim. Acta (Bed.) Vol. 28 
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and without loss of generality the sets of functions {#~i} and {q~,} are chosen 
separately orthonormal. Expressing ~ in this way it is easy to verify that 

P 

/~2  = E (~(1)IF~~176 
i = 1  

q P 
+ ~ <(~(1)lF~~ 2 ~ <~2(I)Iz(1)IID~ 

i = 1  , = 1  

q P P 
+2 ~ <~(1)Iz(1)lqgi~ § ~ ~ - 1 - 1  I1DiOIDj]O (2 [ID, IDj (44) 

i = 1  i = l j = l  

q q 
~ 1 ~ 1  0 0 ~1  0 [ID~ IDj IID~ID~ ] I~)ID~~ + (2[~;q5) I ~ o - - [IDi IDj Y~ Y ,  r  ~ j ]  

i = 1 1 = 1  

P q 
~1 ~1 0 0 ~1 0 - - IID~ q~j]  4[ID~ q~j [4, 4~ [r Ir176 Y E ~ ' "  o o 

i = l j = l  

We note that/~2 depends only on zero and first order orbitals. Also since/~2 is 
always greater or equal to the coupled second order energy E~ and idential with 
E~ when kfi = ~ we may calculate the first order orbitals {ID~I} and {~b~ 1} by 
minimising (44) with respect to variations in {v)~} and {q~} subject to the con- 
ditions: 

<#~] 1r176 + <@~ > = 0 ,  (45) 
0 - 1  <@~ liD~ + <ID, [IDj> = O. (46) 

4. Uncoupled Perturbation Theory 

The complexity of the equations of coupled perturbation theory has led to 
considerable interest in the simpler uncoupled perturbation theory. In his original 
paper Dalgarno [2] showed that it is possible to correct the energies obtained 
from the simpler uncoupled theory; this theory is discussed in the next section. 
The zero order equation is identical with that of coupled theory (Eqs. (5) and (6)). 

If we now perturb the system by a sum of one electron operators 2 W = 2 ~ z(i) 
as in Section 2 we obtain the perturbation equations i 

k 

(/~0-- Eo) ~k=(E1 -- I/V) ~k-1 + E E i  ~'lk-i(~kl (47) 
i = 2  

for k __> 1. These equations differ from those of coupled theory in that they neglect 
the change of the self consistent terms due to the perturbation. Expanding the 
orbitals {ID,} and {~b,} in terms of a basis set {car} as in Section 2 we obtain the 
equations: 

~,(Fr, O k ~ (  k-1 i j  k - j ) ( 4 8 )  - E~ SJ  ai~ - (E~ Srs - zrs ) ais + (~kl E~i Srsais 
s = l  s = l  j = 2  

s = l  5 = 1  j = 2  
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for all orders k > 1. The first and second order energies are given by 

Ea = ( 7 , 0 1 W l  7 ,o )  = ~ (pO + QOr) zr~ (50) 
r$ 

1 1 Ez = (7,11 W[ 7,0) = -~ ~ (Pi~ + Q~'~) z,~ (51) 

where the charge and bond order matrices of the k th order are defined analogously 
to Eqs. (19) and (20). 

5. Corrections 

Uncoupled theory usually gives poor energies compared with coupled theory. 
It has been found, however that it is possible to correct the uncoupled results so 
that their accuracy is comparable. This was first introduced by Dalgarno [2] 
and has been developed by Tuan et al. [1] and Amos and Musher [8]. In order 
to correct the uncoupled energies we define V such that 

V = ~ - /~o .  (52) 

Suppose we have solved the uncoupled equations to infinite order so that we 
obtain the uncoupled wavefunctions and energy defined as follows: 

7,0 = L 2k7,k, (53) 
~=o 

E~  L 2kEk " (54) 
k = O  

Let /~ = / t o  + 2 W (55) 
then 

/~ 7,0 = E o 7,0. (56) 

Consider the perturbation equation 

(I~I q- ~t V) (k=~o ~k T,k) = (k=~o ]2k l[tk) (j~=o #J E j) (57) 

then the first order correction to the energy is given by 

E ~ =  (7"~ v l  7 , 0 ) .  (58) 

If we assume that the wavefunctions are real and expand in powers of we can 
obtain corrections for the first and second order uncoupled energies: 

E~ = 0 (59) 
p p 

E21 Z E ( 2 [ i p ~ j  I~pio,p~o] 1 , o o 1 o 1 o = - -  [~0 i ~/)j I~oj lPi ]) ['P~ 'Pj I qb q~ ] -- 
i = l j = l  

q q 
+ ~ Z  , ~ o o 2 1 o o , o (2E4,, q~j 14'~ q~j] - [4', 4b Iq~j 4~] - E4h 4b 14,14,~ (60) 

i = l  j = l  

p q 

+4 Z y~ [ ~ J  o o 
i=lj=l 

13' 
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In the case of coupled theory we define/~ such that 

/ - ) = / t ~  k=O ~ (~i (G~(i)[~ (61) 

where the C k are chosen so that to all orders of 2 

(~P~ I ~/f + 2 W[ 7J~ = (TJ~ [HI 7t~ (62) 

If we define V so that 

V = o~(f-/-t + 2 W (63) 

and proceed with the double perturbation procedure as in the uncoupled case 
we obtain 

E 1 = (~o[  V[ 7J~ = 0 .  (64) 

This result is usually summarised by stating that coupled theory is correct to 
first order although as V is a different operator in the uncoupled case, this is 
perhaps not a fair comparison. 

One of the most significant differences between the single determinant approxi- 
mation for a molecule with an even number of electrons and one with an odd 
number is that the former is an eigenfunction of ~2 whereas the latter is not. 
The single determinant for an odd number of electrons may be expanded in pure 
spin states. To obtain a better approximation to the ground state wavefunction 
Amos and Hall have suggested the use of an annihilator of the largest unwanted 
component spin state [18]. If the ground state is an eigenfunction of ~2 with 
eigenvalue s then the annihilator of the next component As+ 1 is given by 

As+ 1 = ~z _ (s + 1)(s + 2). (65) 

The operator ~2 can be taken as 

~ 2 =  1 1 P.o. (66) ~ - ( P + q ) +  ~ - ( P - - q )  2"k- Z ~ .~  
io: jl~ 

where P~.j. exchanges the spin function associated with the ith orbital with 0~ spin 
th " " " and the j orbital with fl spin so that for example 

p.o. ~o--- - ( n ! )  ~det {~P~ ~b~ ... ~,~ .~O(p+q)/~(p+q)} (67) z ~ . l ~  . . . .  

In both coupled and uncoupled theory we may correct the single determinant 
wavefunction by annihilating the highest unwanted spin component perturba- 
tively. To do this we will use Amos-Musher perturbation theory [11]. As before 
we assume that we have solved the coupled or uncoupled equations to infinite 
order. The theory will be developed in terms of the operator H which has been 
defined earlier and which is different depending on whether we are using coupled 
or uncoupled theory. In either case we have 

/_) 7,0 = EO ~uo (68) 

where kv ~ and E ~ are defined by Eqs. (53) and (54). Define 

V = ~(  - / 4  + 2 W.  (69) 
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From (68) we have 

As+11217  t~  = E ~  As+ I 7 t~  . 

Consider the perturbation equations 

A~+ t(/~ + # V)~o + (/~ + # V)(k= ~ #k~lk) 
( )(2o ) = A~+I ~o + #k~k #kEk " 

k=l  

From these we obtain 

E t = (71~ 1 VI 7J~176 11 7J~ 

Expanding in powers of 2 where 

(7 '~176  = ~ 2~Y ~, 
k=0 

<TJ~176 = ~ ;tkX ~ 
and k = o 

E 1 = ~ E~ 2 k 
k=O 

we may obtain terms through first order in # and k th order in 2. 
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(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

6. Results and Discussion 

Trial calculations have been carried out on a number of alternants. The 
perturbations used were point perturbations of the form 

Zrs = 6,.u6~ for some u. (76) 

In Table 1 the second order energies obtained by the various methods that have 
been outlined in the previous sections are listed. The term correction 1 refers to 
the ordinary correction discussed in Section 5 whereas correction 2 is taken to 
mean correction by Amos-Musher perturbation theory. The geometric approxi- 
mation, first introduced by Musher and S chulman [7] (see also references [ 12, 13]), 
has also been used and the results are given in Table 1. 

The perturbation theory developed is suitable for the treatment of aza sub- 
stituted benzene ions. We assume that the Nitrogen atoms may be represented by 
a change in the one electron operators so that 

z,~ = v 6,s if r is a Nitrogen site (77) 

= 0 otherwise. 

The value of the parameter v has been discussed by Amos and in this work his 
parameter will be used namely v = - 1.73 eV [14]. 
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Table 1 

Molecule Allyl Cis-butadiene triplet 

Perturbation 1 2 1 2 
at atom 

Uncoupled E -0.024 -0.032 -0.017 -0.039 

Uncoupled E -0.033 -0.043 -0.023 -0.052 
+ Correction 1 

Geometric - 0.039 - 0.048 - 0.026 - 0.058 
approx. 

Uncoupled E -0.034 -0.043 -0.022 -0.052 
+ Correction 2 

Coupled E -0.039 -0.048 -0.029 -0.058 

Coupled E -0.034 -0.045 -0.030 -0.058 
+ Correction 2 

Table 2 

Molecule Atom UBS UAS CBS CAS 

Pyridazine - 2 0.320 0.288 0.347 0.317 
2/3 4 -0.123 -0.053 -0.109 -0.043 
substituted 5 0.302 0.264 0.262 0.227 

Pyrimidine - 6 0.273 0.237 0.174 0.160 
2/6 1 -0.125 -0.055 -0.039 -0.015 
substituted 3 0.352 0.316 0.451 0.399 

4 - O. 126 - 0.056 - 0.209 - 0.093 

Pyridine - 1 0.394 0.356 0.330 0.306 
1 2 0.060 0.076 O. 160 O. 136 
substituted 3 0.023 0.045 - 0.053 0.007 

4 0.440 0.400 0.457 0.413 

Pyrazine - 1 0.402 0.366 0.364 0.338 
1/4 substituted 2 0.049 0.067 0.068 0.082 

Pyridine + 1 - 0.121 - 0.025 - 0.095 - 0.020 
1 2 0.313 0.265 0.289 0.245 
substituted 3 0.313 0.264 0.335 0.279 

4 -0 .130 -0.028 -0.155 -0.033 

Pyrazine + 1 -0.126 -0.026 -0.129 -0.029 
1/4 substituted 2 0.313 0.263 0.314 0.262 

Pyrimidine + 6 0.031 0.061 0.052 0.062 
2/6 1 0.383 0.322 0.259 0.211 
substituted 3 0.050 0.076 0.050 0.078 

4 0.457 0.409 0.537 0.507 

Pyridazine + 2 0.059 0.081 0.078 0.094 
2/3 4 0.418 0.362 0.403 0.353 
substituted 5 0.023 0.057 0.019 0.055 

UBS Uncoupled spin densities before annihilation. 
UAS Uncoupled spin densities after annihilation. 
CBS Coupled spin densities before annihilation. 
CAS Coupled spin densities. 
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Table 3 

Molecule Atom UBC UAC CBC CAC 

Pyrazine - 1 1.388 1.412 1.437 1.439 
1/4 substituted 2 1.056 1.057 1.032 1.032 

Pyridine - 1 1.407 1.411 1.494 1.492 
1 2 1.066 1.066 1.025 1.021 
substituted 3 1.085 1.083 1.101 1,101 

4 1.292 1.294 1.254 1,256 

Pyrimidine - 6 1.342 1.342 1.442 1.440 
2/6 1 0.897 0.897 0.810 0.812 
substituted 3 1.204 1.202 1.134 1.134 

4 1.010 1.011 1.037 1.037 

Pyridazine - 2 1.332 1.332 1.363 1.363 
2/3 4 0.959 0.961 0.937 0.939 
substituted 5 1.210 1.208 1.200 1.198 

Pyrimidine + 6 1.044 1.046 1.135 1.137 
2/6 1 0.629 0.627 0.546 0.544 
substituted 3 0.808 0.810 0.743 0.743 

4 0.668 0.664 0.698 0.696 

Pyridazine + 2 0.958 0.960 0.984 0.980 
2/3 4 0.652 0.648 0.630 0.626 
substituted 5 0.890 0.892 0,886 0.890 

Pyridine + 1 1.122 1.122 1.192 1,192 
1 2 0.699 0.701 0.656 0.656 
substituted 3 0.755 0.757 0.769 0.771 

4 0.971 0.967 0.958 0.956 

Pyrazine + 1 1.101 1.101 1.156 1.156 
1/4 substituted 2 0.700 0.700 0.672 0.672 

UBC Uncoupled charge densities before annihilation. 
UAC Uncoupled charge densities after annihilation. 
CBC Coupled charge densities before annihilation. 
CAC Coupled charge densities after annihilation. 

If we define Prs -- pO + p~ + / ) 2  (78) 

and 
Q-~rs 0 1 2 = Qr~ + (79) 

then approx imat ions  to the spin and  charge densit ies at a tom r are given by 

and P , ~ -  0.,, (80) 

P,, + (2,, (81) 

respectively. These are calculated for var ious aza subst i tuted benzene ions and  
the results are given in Tables  2 and  3. Approximat ions  are also given to the spin 
and charge densities after the highest unwan ted  spin componen ts  has been 
annihi lated.  The theory of this has been developed by Snyder  and Amos [15-]. 
The approx imat ions  to the spin and  charge densities are of the form 

and  /~" - ~"  (82) 

R,, + S,, (83) 



190 B.L. Burrows: 

where 
R,, = P,, + (P Q P,~- �89 fi_~,, - �89 ~ P_r~)2/z , (84) 

Srs=Qrs or (Q PQrs- �89189 (85) 
and 

X = �89 + q) + �88 - q)2 _ (s + 1)(s + 2) - ~ e,,Q,s. (86) 
r $  

As the ground state wavefunctions of the benzene ions are degenerate it is 
necessary to choose the correct zero order wavefunction for the perturbation. It 
is possible to choose the two degenerate wavefunctions for the benzene anion 
(or the cation) so that one of the functions is symmetric with respect to reflection 
about a plane perpendicular to the molecular plane through atoms 1 and 4 
(numbering sequentually from any atom) and the other antisymmetric. This choice 
imposes a constraint on the Hartree-Fock solution. As G ~~ and G ~~ depend on 
the spin orbitals the numerical procedure used was an iterative procedure. If the 
initial approximation is chosen symmetric (antisymmetric) then at each stage of 
the iteration the wavefunction will be symmetric (antisymmetric). Wavefunctions 
obtained this way are not actually energetically equivalent (see Amos and Snyder 
[16]). However this procedure enables a zero order wavefunction of the correct 
symmetry to be obtained. For a discussion of which zero order function to choose 
for a particular aza substitution see Ref. [17]. 

On examination of Table 1 we see that the results for the geometric approxi- 
mation are very close to those for coupled theory. This is in line with previous 
calculations using the geometric approximation [7, 12, 13]. The corrections for 
the pure spin state (correction 2) may be seen to be smaller than the differences 
between the uncoupled and coupled theory results. 

From Tables 2 and 3 it may be seen that although the correction of Snyder 
and Amos has only a small effect on the coupled and uncoupled charge densities 
it has a significant effect on the spin densities. Thus it appears that for charge 
density calculations the annihilation of thehighest unwanted spin state may be 
unnecessary. For spin density calculations, which involve differences between 
quantities, and are consequently of a different order of magnitude to the charge 
densities, it may be necessary to carry out the perturbative calculations to higher 
orders or to annihilate other unwanted spin states. However the spin densities 
so obtained are usually related to experimental results using one of several 
empirical formulae. Considering the inaccuracies inherent in these formulae the 
accuracy obtained in the calculations presented here is probably sufficient for 
comparison with experiment. 
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